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Free Electron Model

Atoms contribute valence electrons

which are completely free and bound

by the edges of the material 9 O & e
Electrons have no interaction with the - R 3
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Density of States

e Density of States - describes the number of available states per
unit energy per unit volume
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Fermi—Dirac Distribution

* Fermi-Dirac Distribution - describes the probability that an
available state is filled

-1
— Ex \
JE(E) = |1+ exp £
kT )
JHE)
1.0 F : , 0 Fig. 13.4. Fermi—Dirac
- Bk s (gL =5i0) distribution as a function
of E/E, for different tem-
peratures.
Y A E /kT=3
i E./kT=10
N Ep/hT=30
1 Mx
0 0.5 1.0 1.5 2.0 E EF

1/24/2011 ECE 162B, Winter 2011, Lecture 6



Free Electron Model Successes and Failures

* Insights:
— Discrete set of energies (density of states)
— Fermi-Dirac distribution
— Heat capacity

* Fails to Describe:
— Electrical conductivity

— The distinction between metals, semimetals, semiconductors,
and insulators

— Positive values of Hall coefficient

—> Introduce interaction with lattice ions

1/24/2011 ECE 162B, Winter 2011, Lecture 6 5



Nearly Free Electron Model

Three common approaches:

1. Kronig-Penney Model — Solution to Schrodinger equation in a
periodic potential

2. Ziman Model — Bragg reflection from the crystal lattice

3. Feynman Model — Energy splitting of atoms brought close to each
other

Results:

* Allowed energy states are distributed in bands

e Structure of allowed energy bands distinguishes between metals,
semimetals, insulators, and semiconductors

e Electrons exhibit an effective mass, m*
e Electrons can behave as if they have positive or negative charges
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Periodic Potential and Bloch’s Theorem

 We need the solution to Schrodinger equation in a periodic
potential

* Assumption: wave functions will not deviate significantly from
those of the free electron model (slightly perturbation)

) UCF)
Fig. 8.1 Schematic illustration
of a one-dimensional periodic
potential caused by equally
spaced atoms in a crystal lat-
tice. The potential is periodic
with period R, that is U (7) =

| | U(¥ +R).
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e Bloch showed the wave functions are of the form:
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Kronig-Penney Model

e Simplified 1-D periodic potential consisting of finite
potential wells will yield:

— allowed energy bands
— forbidden energy gaps
— dispersion relation

Yy —Uy Fig. 8.2. Periodic square
well potential used for
the Kronig-Penney cal-
Yo <~ b—| ¢ = culation. The height of
E the barriers is U, and the
electron energy is de-
noted as £.

|-:— one period —

e See class notes for outline of solution to Schrodinger
equation with this potential
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Result: Band Structure of 1-D Lattice

Condition arising from Bg o2
solution to Schrodinger VT sinh (Bc) sin(ab) + cosh(pe) cos(ab) = cos(ka)
equation: ap
o = 2mE/h? [32 = Em(UD—E]fﬁz
A L(E)
L(E) = vcos(ka)
Alsoeed Allowed Allowed Fig. 3'3. Banq structure of
band band hand a one-dimensional lattice.
) I S S — “ﬁar—"_ _ The function L(E) defines
For- Forbidd For- the allowed bands and the
bidden Grg;p e bidden forbidden gaps of the lat-
0 gap gap /} tice. The allowed bands
E have a center energy of

E_ and an energetic width
of 2AE . With increasing
energy the allowed bands
E. become wider and the
- forbidden gaps narrower.
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E vs. k - Dispersion Relation

* Kronig-Penney model also yields the dispersion relation
(see class notes)
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zone zone s Fig. 8.4. Dispersion relation
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= lattice of a period a. The
dash-dotted line represents
b the dispersion relation of a
free electron.
53] l." ' .
= / :
2 al forbidden gap
m j“
Free-electron
dispersion allowed band
) == vf N
e forbidden gap
/ allowed band
0 L 2n 3T Wave vector k —=
a a a

1/24/2011 ECE 162B, Winter 2011, Lecture 6 10



E vs. k - Dispersion Relation

* Significant deviations from the free electron parabolic
curve only exist at Brillouin zone boundaries
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Semiconductor Band Structure

3-D: dispersion relation depends on propagation direction since
the atomic structure and hence the periodic potential depend on

the electron propagation direction
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Fig. 8.6 Dispersion relation (band structure) for electrons and holes in the conduction
and valence band within the first Brillouin zone for GaAs and Si
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Energy Gap vs. Lattice Constant

* |In general, as bond length gets smaller the energy gap

Increases
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